
Spectral mammography using a photon 
counting detector provides a unique 
method for measurements of breast density

Breast density and cancer risk
Breast density, defined as the percentage of 
fibroglandular tissue (stroma and epithelial tissue) over 
the whole breast, has been associated with a higher risk 
of cancer. In fact, it has been suggested that women 
with a mammographic breast density higher than 75% 
have a four- to six-fold higher risk of developing breast 
cancer than women with little or no dense tissue.1

Improved methods of measuring breast density could 
potentially help clinicians more accurately quantify 
breast cancer risk, and monitor changes in risk over 
time. This is especially significant because breast density 
changes with external factors, such as alcohol use, 
hormonal agents, diet, and other factors. The advantage 
of using a precise density assessment has been 
suggested by Boyd et al., who reported that for every 
1% increase of mammographic breast density, there is 
a 2% increase of the relative risk for breast cancer.2

Current methods of assessing breast density
The positive association between a qualitative 
classification of mammographic breast density 
and breast cancer risk was first reported in 1976, 
and has since been confirmed by many studies.1,3-13 
However, qualitative methods of assessment 
aren’t reproducible, because different reviewers 
can perceive density differently. Thus, several 
quantitative methods have been developed. 
The first of these entailed reviewing 2D projection 
images of compressed breasts, and segmenting the 
breasts according to different X-ray attenuation 
properties.14,15,16 This method required each pixel 
in the image to be classified as either purely 
adipose or purely fibroglandular tissue, making the 
measurements inaccurate. In addition, because the 
measurement relied on a 2D projection, it didn’t 
take into account variations in breast thickness.
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More recently proposed methods attempt to 
measure the fibroglandular and adipose thicknesses in 
each pixel, further increasing accuracy. These include:
•	Using the total estimated compressed breast 

thickness between the compression and the 
support plates, along with a system calibration

•	Segmenting the fibroglandular tissue in the 
column above each pixel, so that a measurement 
of the volumetric breast density can be 
acquired from mammograms – either by using 
a standardized, quantitative representation of 
the breast,17,18 or using a volumetric method 
to measure breast density using calibrations 
from breast tissue-equivalent materials of 
known thicknesses and compositions19,20

While these methods represent improvements, 
they still depend on knowledge of thickness, which 
is compromised by using a shape model or because 
of the mechanical precision of the compression 
paddle. In fact, these two variables can lead to 
a two- to three-fold increase in measurement 
error for volumetric breast density.21

Feasibility phantom study shows 
high accuracy for Spectral imaging 
breast density measurements
Studies have shown that accurate measurement 
of breast density can be achieved via dual energy 
imaging, which uses a standard mammogram as a 
low-energy image, and then acquires an additional, 
high energy image. By measuring the dual energy 
decomposition of adipose and fibroglandular 
tissues, accurate measurements of both density 
and thickness can be obtained.22,23 However, the 
additional, high energy image increases mean 
glandular dose (MGD). In addition, if the patient 
moves between the acquisition of the two 
images, misregistration artifacts can result.

Spectral imaging with a photon counting detector, 
which sorts photons into low- or high-energy 
categories, eliminates the need for two exposures. 
We recently performed a phantom study on a 
mammography system that uses photon counting 
technology to determine the feasibility and accuracy 
of this technology to quantify volumetric breast 
density with just a standard mammogram.24

Photon counting technology
The photon counting detector system consists of a large 
number of crystalline silicon strip detectors, with the 
strips tapered to point back to the X-ray source. To 
overcome silicon’s relatively weak attenuation due to 
its low atomic number (Z=14), the strip detectors are 
in edge-on geometry, with their long axis parallel to the 
direction of the X-ray beam. This creates a sufficient 
absorption length to result in high quantum efficiency 
for the full energy spectrum used in mammography.

Our study consisted of two parts:
•	Simulation studies to predict the optimized 

imaging protocol for the specific system, 
by maximizing the dual energy SNR with 
respect to mean glandular dose (MGD)

•	A comprehensive phantom study to 
characterize the accuracy in breast density 
measurement with the specific system

During data acquisition, all photons whose energies were 
above the noise floor were recorded in the total image. 
At the same time, photons whose energies were higher 
than the splitting energy were recorded in the high-
energy image. The low-energy image was obtained by 
subtracting the high-energy image from the total image.

Conclusion
The results of the phantom study suggest that photon 
counting spectral mammography systems may potentially 
be implemented for an accurate quantification of 
volumetric breast density; the study resulted in 
a root-mean-square (RMS) error of less than 2%, 
using the proposed spectral imaging technique.24

The advantages of using a photon counting 
spectral mammography system include:
1.	Dual-energy data acquisitions, realized by means 

of multiple energy thresholds, can be obtained 
simultaneously with a single exposure, so patients are 
not exposed to radiation dose from second exposures

2.	There is no spectra overlap in dual-energy decomposition
3.	Motion artifacts that could result from acquiring 

low- and high-energy images sequentially are avoided
4.	The electronic readout noise can be effectively 

eliminated by proper selection of the background 
threshold, which dramatically improves detection 
efficiency, especially for low-dose applications

5.	The scanning multi-slit technique helps 
to eliminate scattered radiation
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For more information on photon 
counting detector technology, 
see www.philips.com/microdose.

X-ray image of a dense breast. Breast density has 

been associated with a higher risk of cancer.
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